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ABSTRACT 

The definitions of scheduling relations previously presented by 

the author are extended in this report to allow the translation of a 

relation net into an exact schedule.  Time conditional conflicts in 

scheduling relation nets are detected and resolved by operating on 

extended versions of the bilateral implication and truth tables. 
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SECTION I 

INTRODUCTION 

The analysis of logical scheduling conflicts was formulated in 

(Ref. 1).  Some of the relations defined (see Section 3.1 of Ref. 1), 

such as K, Y, and $, exactly fix the time lines of pairs of activities 

with respect to one another.  A scheduling relation having this property 

is metrized.  The relations T,   £, and N, for example, do not have this 

property and are therefore unmetrized.  The process of extending the 

definition of an unmetrized relation so that the newly defined relation 

is metrized will be called metrization.  The metrization of the relations 

defined in (Ref. 1) will be undertaken in Section II.  In the same 

section, we shall show that an exact schedule  ) can be produced from a 

relation net providing that (a) the relations of the net are metrized, 

(b) the duration of each activity in the net is known, and (c) the start 

or finish time of any of the activities is known. 

In Section II we answer the question:  Given the implication of a 

relative product of scheduling relations, what is the metrized implica- 

tion of the corresponding product of metrized relations?  The reader will 

recall that in (Ref. 1) a bilateral implication table was used to derive 

the relation between any two activities of a relation net.  Given the 

same activities, along with their respective lengths, we now wish to 

quantitatively express the relationship between the activities in terms 

of the metrized relations of the relative strings to which the activities 

belong.  It will be shown in Section II that a metrized version of the 

bilateral implication table of (Ref. 1) is sufficient for this task. 

1) A schedule in which the start and finish times of each activity are 
fixed relative to a time line. 

I 



The truth values of cyclic relative strings were used as a basis 

for logical conflict detection in (Ref. 1).  In Section 11, we will 

use true cyclic strings of metrized relations to derive a basic set of 

conditional equations.  These equations will be put to use in the detec- 

tion and resolution of time conditional conflicts in Section 111. 

Other applications of metrized scheduling relations? include tne 

prediction of conflicts due to the delay 01 slipping of activity start 

and finish times, the extension of relation nets in a conflict-free 

manner (a capability crucially needed for the inter-relating of two or 

more profiles), and the study of the properties of alternative schedules 

generated by relation nets containing very general constraints such as 

Q,  Q:,  and  A  .  All of these applications will be discussed in deptn 

in this report. 

1) There are, for example, four forms of Q',  including Tf     Ty     K,  and 
K.  A relation net containing Q    will, therefore, generate at least 
four schedules. 



SECTION II 

METRIZED SCHEDULING RELATIONS 

DEFINITION OF METRIZED SCHEDULING RELATIONS 

The reader is assumed to be familiar with the algebraic defini- 

tions of the scheduling relations given in (Ref. 1)  As observed in the 

introduction, certain of these relations are already metrized.  Thus 

given the durations of activities X and Y, and the start or finish 

time of either  X or Y, exact schedules can be produced from XKY, 

XKY, XfY, XAY,  and X$Y„  We now extend the definitions of the remain- 

ing relations so that under the same conditions it is possible to produce 

exact schedules from any string of the form XouY,  Definitions of the 

metrized relations are presented in Appendix I.  To produce an exact 

schedule of  Xl*Y,  for example, requires not only knowledge about the 

relates X and Y (durations and start or finish times), but also 

more knowledge about T than is contained in its purely algebraic 

definition.  The additional parameter i = A(*Y) - A(X*)  is easily seen 

to be the needed parameter.  The metrization of £,  on the other hand, 

requires the introduction of two parameters,  i = A(*X) - A(*Y) and 

j = A(Y*) - A(X*).  Each definition or Appendix I is accompanied by a 

figure which is an example of the position of the relates as governed by 

the defined relation. 

The relations Cl,     Q' ,  and A (Definitions 18, 19, and 20 of 

Appendix I) require special mention, since their metrized forms can be 



expressed only as functions of previously defined relations.  Observe 

that there are several ways of writing the metrized versions of both 

A and  A.  For example,  XCR <•> X(yVB(i)V B(i))Y and  XQY <=> 

X(AVa(i)Vo(i))Y .  In Definition 18, Q    is expressed as the union 

1) of all of the relations contained in 0.   Q5  (Def. 19) is easier to 

handle since it is the join of 4, and only 4, mutually exclusive rela- 

tions.  The employment of these relations, and of their equivalent modes 

of expression, will be treated in the following subsection and on page 7. 

For now, we note that the inclusion of one or more of the relations Q, 

Q',  or A in a relation net gives rise to a combinatorial problem of 

some stature. 

DERIVATION OF METRIZED IMPLICATION TABLE 

Denoting the metrized form of a relation uu by M(uu) ,  and 

given  6  as the implication of the relative product  ou cu   we now wish 

to derive M(6)  as a function of M(uu )  and  M(uu )    Briefly, our 

task is to compute the metrized implication of the relative product 

MCoop M(u>2). 

We introduce these notions by way of examples.   Let 

M(cu ) = T(i)  and M(uO = r(j)„  From Appendix A of (Ref  I) we have 

IT = T „  Thus Xr(i)Y T(j)Z = XT(k)Z  for some value of  k   From 

1) Thus yielding a union of non-mutually exclusive relations.  X£(i,j)Y, 
for instance, implies  Xcy(j)Y and hence  E(i, j) V c*( j) = a(j) . 



Figure 1 it is easy to see that Xl\i + ||Y|| + jjZ and thus 

k = i + ||Y|| + j .  The metrized implication M(6)  of r(i) T(jj  is 

thus T(i + ||Y|| + j).X) 

From Appendix I of (Ref„ 1) we have IT = P „  To metrize the 

^  1) 
implication of M(T) M(£) we form the equation Hi) £(n,m) = P(k) 

and solve for K„  The solution is again easily seen from Figure 2, 

where, clearly,  k = i + ||Y|| + m „  Thus T(i) 2(n,m) = P(i + ||Y|| + m), 

Fig. 1 

J^ 
r^ •r^ 

.time time 

Fig. 2 

Appendix II of this paper is a complete table of metrized 

implications for binary products of the relations defined in Appendix A„ 

The reader will observe that those implications containing more than one 

term are written out in conditional form, i.e0 with restrictions as to 

when each form is used.  As noted in the previous section, there are 

various ways of writing the metrization of both Q    and A ,  The 

metrization of those products having implications containing Q and A 

can thus take on several forms.  In each of these cases we have, in 

Appendix B, used what appears to be the most easily deriveable form. 

f(n) P(m) , for instance, equals P(m - (n+ ||x||)  or _A (if 

1) Where X,  Y,  and Z are understood to be, respectively, the first, 
middle, and last relates of the string. 



m - n + I |x| I)  or P(n + | |x| | - m), (QVQ'   = P VJV V?    since  P 

includes ",  K,  a,  and E,  _A_ includes i,     P includes T,  K, a, 

and  E,  P VAVP <i> NvyVN,  and  N  includes  B,  and  N  includes 

0).  T(n) P(m)  also equals N(n - (m - ||z||))  or Y  (if m - ||z|| = n) 

or  N(m - ||Z|  - n),  since, again,  OVH' = Nv/YVN .  Either one of 

the metrized implications of T(n) P(m)  is thus equally acceptable, 

although we have included only the former in the implication table of 

Appendix II. 

METRIZED VERSION OF TRUTH TABLE 

The truth value of the cyclic ternary string Xu; Ya^X does 

not, of course, change when U).  and u)  are metrized,  CycLic strings 

in this section will thus always mean true cyclic strings.  With the 

~ 1) exception of the cycles  KK,    Y¥,  an<3 -AA,  which, in their metrized 

form, carry neither new parameters nor information about the lengths 

of the relates, the significance of a ternary cycle of metrized relations 

is that it implies an equation holding among the parameters of the rela- 

tions and the lengths of the relates.  Hence, the 'l- values in the 

truth table of Appendix II, (Ref, 1), can each (with the above noted 

exceptions) be replaced by an equation.  Figures 3 and 4 exhibit the 

meaning of these equations for the cycles XZ(i,j)i" o/(n)X and 

XKY N(i)X , respectively. 

T)Equivalently,KK 



i   X   j 

n 

_^ time v- t lme 

Fig. 3 Fig. 4 

From Figure 3 we have i+||x||+n=  |Y|  „  From Figure 

4 we have the simpler equation n • j |Y|  .  These equations, on the 

surface trivial, are given in Appendix III.  Their enormous role in the 

detection and resolution of time-conditional conflicts will be seen in 

Section III. 

METRIZED RELATION NETS 

Given A(*X),  ||x||,  ||Y||,  and  XM(u))Y,  where  M((«)  is 

the metrization of the relation GO,  it is easy to show that A(X*), 

A(*Y) ,  and A(Y*)  can be computed, i„e,, an exact schedule of XUJY 

can be produced.  For example, if Xo,(i)Y,  then, under the stated con- 

ditions, we have: A(X*) = A(*X) + ||x||,  A(Y*) = A(X*) + i,  and 

A(*Y) = A(Y*) -  |Y||,  It readily follows that given a metrized relation 

net  , i.e., a relation net each of whose areas is metrized, and given 

I|X.I   for each node of the net, then an exact schedule corresponding to 

the net can be produced providing we only know A(*X )  for some X , 

Figure 5 shows a metrized relation net, 

1) A net with truth value equal to 1, since it makes no sense to metrize 
nets containing logical conflicts, 



Given  ||x||,  ||Y||,  ||Z||,   |V||,  ||W||,  and  A(*X), 

the schedule represented by the net is generated as follows: 

1) A(X*) = A(*X) t | | X. | | , 

2) A(*Y) = A(X*) + i , 

3) A(Y*) - A(*Y) + ||Y|| , 

A)  A(*Z) = A(*Y) , 

5) A(Z*) = A(-'Z) + | |z| | , 

6) A(*V) = A(*Z) - n , 

7) A(V*) = A(Z*) + m , 

8) A(*W) = A(*V) , 

9) A(W*) = A('-X) •• j „ 

(observe that   |v|   and  ||w||,  althojgh not u^.ed, could have been 

employed, respectively, in equations 7) and •}) in the calculations, 

respectively, of A(V*) (= A(*V) + |jv||)  and  A(W-*') (=• A(*W) + ||w||) 

These calculations do, of course, flow directly from trie de l mi Lions ot 

Appendix 1.    The schedule is shown in Figuie e> 

1) We have assumed that the durations and relation paraattcrs are such 
that the relations of the net are satisfied, i.e., the net is not 
in conditional conflict (See Section III, page lil). 



w 
V 

V 

m 

time 

Fig, 6 

It is intertesting to compute the metrized derived constraint 

between X and  V„  From X to  V through Y we form the string 

xr(i)YYZS(n,m)V .  From Appendix B we have  xr(i)YyZ = XT(i)Z and 

XT(i)ZE(n,m)V = XP(i + m + ||z||)V , letting n = i,  i • n,  j = m, 

and  ||Y|| = ||z||  in the table.  From X to V through W we have 

xr(j)WyV,  which, from Appendix II, reduces to XN( j + ||w||)V .  Now 

NA P = £ and hence  XE(j + ||w||,  i + m + j |z|| )V,  as seen in Figure 6, 

In the initial stage of defining constraints it is sufficient, 

for certain activities, to express XfiY,  XfJ'Y,  or  XAY without specify- 

ing any ordering of X with respect to Y.  There are, in fact, good 

reasons for employing these general relations whenever possible.  The 

chief advantage, as will be seen from our next example (and also in our 

future work on the time-line packing of subschedules), is that the planner 

is provided with a variety of schedules for a given net, each possibly 

different in some critical operational aspect,  It is true that the 

excessive use of such relations will induce combinatorial problems of 

great complexity.  On the other hand, there is little excuse for reducing 

the number of solutions to a problem in the interests of achieving a 

simplicity and rigidity corresponding only to the most highly deterministic 



(and therefore improbable) situations. 

Figure 7 shows the set of schedules generated by the metrized 

relation net XE(i,j)Y,  YQ'Z,  Za(S)W,  and WAT,  where  T denotes an 

interval of time with left hand endpoint at the beginning of the time 

line, i.e.,  *T • 0 and hence A(*T) = 0  .  Cases 1, 2, 3, and 4 

correspond, respectively, to Q' = r(n), Q' = K,  Q' = TCn),  and 

A' = K .  The total durations of the su&schedules are   |Y|| + n + ||Z| 

+ S (Case 1),  ||Y||+||Z||+S (Case 2),  ||Z|| 4 n + ||Y||  (Case 3), 

and  ||z|| + ||Y|   (Case 4).  If it is desired that either  X or  Y 

precede  Z,  then Cases 1 and 2 apply.  If the shortest subschedule 

having either  X or  Y  precede  Z  is desired, then Case 2 alone applies, 

The shortestsubschedule is obtained in Case ^. 

j 

Y 2 

W w 

t ime t ime 

Case 1.  fT = T(n) Case 2. Q'   = K 

Z   "    Y  r-^% f- 

X X  i 

w w 

time 

Case 3. Q'   - T(n) 
Fig. 7 

Case 4. Q'   = K 

1) The activity  T is used in defining constraints between physical 
activities and the schedule time line.  (See Section IIL) 

10 



The choice of a subschedule may also be dictated by relations 

holding between nets which, as soon as we know what is meant by the left 

and right partial complements of a net, may be defined precisely as they 

are between activities. 

For any net  n define  *n to be  *X.,  X en.  where 
1'        i     ' 

*X  (NVY)*X       for  each    X.en.     Similarly,   define     n*     to  be     X*        X, en. 1 J J k'       k     ' 

where    X*k(P N/-/V )X*.     for  each    X.en.     Finally,   define     ||n|j   = A(n*) 

- A(*n)     to be  the   length of  the  net    n.     Figure  8  shows  the  situation 

for  a  net    n    with  seven activities. 

* 

s* ,. 13 * 
x~ x7        x^     x.   x n 

2 4 5 6.      7 -r 

Fig.   8 

Define  ^  to be net  XEflTZoWAT )  and let  n  be the net 

TKXrKY"KZ?,   Suppose it has been determined that  n Q'n  must hold. 

From a Gantt chart construction it is then immediately evident that 

n Kn    We will now derive this constraint directly.  Since the activity 

W is a part of n^ we can write n EW.   Figure 9 is the relation net 

of the composition of n  and n„. 

1)  T as in Figure 7, 

11 



x    E    Y     n     Z      a 1     K     X '   K      Y •   K      Z 
 > } > 

Fig.   9 

From  the   implication  table  of   (Ref.   1)   we  v-jve     n^(EAK)n2 =  n^Av a)Kn2 

=  n  (K\/B)n Now    fl'   =  KVKVTvr,        Hence       n  (K^B.)^^ 

=   n   (KVB)(KVKvrvr)n    =   n ,(KKV KKV «T V KT V BK V BK V Q^ V §T)n^        From 

the truth table of (Ref. 1) we find that all of these cvclic ternary 

strings are false with the exception or  KK.   Hence  0 *   K and 

n Kn Kn   i.e.   n Kn   as we set out to prove. 

It is now clear that Cases 1 and 2 are the least likely to 

result in a violation of  nKn2  (||*z||+||z||+n+ ||Y||  may exceed 

||T||,  for example, in Case 3).  We shall return to this example in 

Section III, where we will use metrized relations to deduce direccly the 

desirability of Cases 1 and 2,  At this point it is important to see the 

way in which relations between nets reduce the combinatorial proDiems 

generated by relations such as  Q and  Q'  within nets. 

12 



SECTION III 

CONDITIONAL CONFLICTS 

BASIC FORMS FOR THE GENERATION OF CONDITIONAL EQUATIONS 

Scheduling conflicts arising from logical incompatibilities 

among scheduling constraints were discussed in (Ref. I).  It will be 

recalled that a Gantt chart of a relation net exists if and only if 

the truth value of the net is 1.  Thus given a true relation net  it is 

always possible to satisfy the net's relations by some set of activity 

durations.    Given the start time of any activity, a Gantt chart of the 

net can then be produced.  These statements hold true for metrized rela 

tion nets, as well, the only difference being that the set of Gdntt 

charts corresponding to a metrized net is generally properly included in 

the set of Gantt charts corresponding to the unmetrized version of the 

same net, a consequence of the added restrictions imposed by the para- 

meters of the metrized relations. 

A metrized relation net is realizable if the durations of the 

activities, along with the start or finish time of some activity, are 

given.  From Section II, page 7 , it follows that the start and finish times 

of each activity of a realizable net are determined.  Define the metric 

variables, or m - variables, of a realizable net n to be the collection 

M(n)  of durations and start times of the net's activities, along with 

1) The cardinality of the class of such sets is, in general, 2 . 

13 



the parameters of the net's relations,  A realizable net is in conditiona1 

conflict if any of the members of M(n)  undergo a change of value.  We 

recognize four types of conditional conflict: 

Type I:   The m - variable changes leave each of the relations 

of the net fixed. 

Type II:   The m - variable changes induce a change of the 

relations of the net, but a redefinition of the m - variables restores 

the original relations. 

Type I'll;  The m - variable changes induce a change of tne 

relations of the net, no restoration of the original relations is possible 

by redefining the m - variables, but the new net is not in logical 

conflict. 

Type IV:   Identical to Case 3 except that the new net is in 

logical conflict. 

In this paper, we shall fully treat Types I and II, and give some analyt- 

ical insight into Types III and IV. 

We now turn to the application of metrized relation nets to 

exact scheduling.  The basic principles of application can be deduced 

from nets having only one activity that must be completed at a specified 

time, and we so restrict our discussion in this section,  The general 

case, in which several activities of a net are constrained to the time 

line, will be treated in Section III, page 21. 

1) Types III and IV will be treated in general in "Heuristics Tor the 
Resolution of Logical and Conditional Scheduling Conflicts" by L. C, 
Driscoll, The MITRE Corporation.  MTR-110 (To be published) 

14 



The example in Figure 7 of the previous subsection will serve as 

the starting point of our development of a set of equations from a 

realizable net.  We begin with Case 1, in which 0' « r(n).  Define 

dX,  dY,  dZ,  and dW,  respectively, 35 the durations of *X, *Y, 

*Z,  and *W. 

We then immediately have  TN(dX)X,  TN(dY)Y,  TN(dZ)Z,  and 

TN(dW)W.  Figure 10 is the metrized relation net for Case 1 with the 

above relations included. 

Fig. 10 

From the metrized implication table of Appendix B. we find 

that  XE(i,j,)Yr(n)Za(s)WAT = XT(j + n)Ztt(6)WAT = XP(j + n + s + 

+ | |Z| |)WAT = XP(j + n + s + | |z| |)T„   We now form the cyclic ternary 

string XP(j + n + s + j |z||)TN(dX)X and, from the metrized truth table 

of Appendix III,find that this string is equivalent to j + n + s + ||z| 

+ dX + I|x|| =  |T|I,  which is clearly seen in Figure 7,  The metrized 

implication of Yr(n)Zo-(s)WAT is YP(n + s + ||z||)T.   From the 

metrized truth table  YP(n + s + | |z | | )TN(dY.)Y  is equivalent to 

1) Note that dX  is the start time of X,  etc. 

L5 



n + 6 + I|Z|| + dY + ||Y|I =  |T|I,  which is again evident in Figure 7. 

The equations  dZ + ||Z|| + B = ||T||  and  dW + ||w|| = ||1||  can be 

similarly derived 

The equations derived above are called partial conditional 

equations.       Each has the property of being generated from a cycle 

of the form X_0U.X,U), • . • • UO X TN(dX.)X,.t  involving both the activity  T 0011    nnOO 

(a section of the time line with  *T = 0),     and the start time of some 

other activity,  A complete set of partial conditional equations of a 

realizable net is a set of partial conditional equations in which each 

m - variable of the net occurs in some equation of the setn  The comple- 

tion of the set of partial equations of the net of our example is obtained 

by substituting  i + ||x|| + j  for   |Y|   in any equation containing 

||Y||,  since  XZ(i,j,)Y  implies  i + ||x|| + j - ||Y||, 

A total conditional equation of a realizable net is the sum 

of any complete set of the net's partial conditional equations,  A total 

equation of the net of our example is;  dX + dW + dZ 4- i + j |Y| | + | [W| 

+2(dY+ ||x|| + j) + 3n + 4(s + ||z||) = 5||T||.   It might be supposed 

that so long as this equation holds there can be no violation of the 

relations between the activities.  A quick glance at Figure 7 will 

convince the reader that such is not the case.  An increase in n,  for 

example, cannot be offset by a decrease in  ||W||,  since, from the 

partial equations,  ||w||  is not a function of n.  One of the uses of 

total conditional equations will be seen on page 19. Obviously, the 

16 



relations in a realizable net will remain fixed so long as the partial 

equations hold and the relation parameters remain within their proper 

bounds. 

Let n be a realizable net,  T an activity of n with 

*T - 0,  and Z an activity such that ZAT and *Z 4  0.  Then TNZ. 

For any activity X and relation U) it is easy to verify that 

C(XuuZATNX) = 1.  More explicitly, we have: 

C(EAN) = C(PN) 

C(SAN) = C(5N) 

C(rAN) = C(PN) 

C(FAN) = C(?N) 

C(KAN) = C(PN) 

C(KAN) = C(KN) 

C(NAN) = C(«N)VC(-A.N)VC(PN) 

C(NAN) = C(PN)VC(AN)VC(?N) 

C(PAN) = C(PN) 

C(PAN) = C(PN) 

C(OAN) = C(PN) 

C(aAN) = C(ON) 

C(8AN) = C(?N)VC(A_N) VC(PN) 

C(8AN) = C(»N)VC(AN) VS(PN) 

C(YAN) = £(8N)VC(YN)(= 0)\/C(NN)(= 0) 

C(AAN) = C(AN) 

C($AN) = C(AN) 

17 



Except where indicated, all truth values in the above list are equal to 

1.  The list can be decomposed into the following six classes 

Class 1 

Class 2 

Class 3 

Class 4 

Class 5 

Class 6 

PN, o-N 

PN, am 

TN 

KN 

AN 

8N . 

Letting  n  be the parameter of the first relation, and  dx  the para' 

meter of the second   these classes correspond (Appendix IT!), respectivelv, 

to the partial conditional equations: 

1) 

2) 

3) 

4) 

5) 

6) 

dX + I|X| 

dX + ||x| 

dX = n + 

dX = ||T| 

dX + ||x| 

dX = n 

+ n = 

It may appear that (6) does not involve   |l||,  but  SN was trie result 

of contracting X^ZATNX.   From the metrized implication tabit we fii-.d 

that X^ZAT = XB( | |T| I - | |z| |)T and hence n - | |l| | - j |z | |  in (6) , 

The six classes of ternary cycles named above will be callcj Lht 

forms for the Generation of Conditional Equation^. 

1) Thus yielding the general form Xuo(n)TN(dX)X 

is 



RELATIONS BETWEEN NETS 

In Section II, we presented an example of two nets,  n ,  n , 

standing in the relation n Kn„.  n  contained the relation CV , which 

gave rise to the four cases of Figure 7.  It was stated that the desira- 

bility of Cases 1 and 2 could be deduced directly from a metrized relation 

net. A comparison of Cases 1 and 3 will illustrate the method. 

The metrized derived constraint between X and T (Case 1) 

is XP(j + n + s + ||z||)T.   The metrized derived constraint between 

X and T (Case 3)  takes not one, but three forms, depending on the 

magnitudes of the various m - variables involved.  Thus 

XZ(i, j)Yr(n)ZQ<s)WAT reduces to: 

(i)   XP(i + n - s + | |x| |)T  if  i + n+||x||>s, 

(ii)  XAT  if  i + n + | |x| | = s , 

(iii)  XP( | |x| | - i - n - s)T if  i + n + | |x| | <s . 

Turning now to Figure 9, we substitute X for W and, in succession, 

P, -A. ,  and P for -A. .       The truth values of the resulting cycles are 

C(PKKE) = 0,  C(-AKKS) = 1,  and C(PKKZ) = 1.   Hence Case 3 can give 

rise to a logical conflict if i + n + ||x|| > s, whereas no such con- 

flict is possible in Case 1.  Comparisons of Case 1 with Case 4 and of 

Case 2 with Cases 3 and 4 will, naturally, yield similar results.  This 

establishes the feasibility of automatically analyzing relations between 

nets without referring to Gantt charts. 

The analysis of another problem involving relations between 

nets is based upon Figure 11, in which the realizable nets n * Yr(m)ZXT 

and n = ur(i)V T(j)wAT  are related by YyU    and Zfl'V.   Suppose we 
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let fi'  be T(n),  as in the figure. 

Fig. 11 

The total conditional equation for the combination of  n  and 

n  is  ||u|| + i + dV + dW + 2(dY + dZ + dU + n) + 3(m + ||Y||) 

+ 4(||v|j + j) + 5(|\i\ | + ||W||) = 3T + 5T2,  which yields 

n = A;(5T2 + 3T ) - [\(\ |u| | + i + dV + dW) + dY + dZ + dU + 3/2(m + | |Y| |) 

+ 2(||V|| + j) + 5/2(||z|| + ||W||)] . 

If  n > 0  then T(n)  is an acceptable form of Q'.   If  n = 0  then 

A1 = K.  If  n < 0  then fj1  must take the form of either  un)  or  K 

and a new total conditional equation must be derived based upon  V 

preceding Z.  Again, if n > 0 then T(n)  is an acceptable form of 

A'.   If  n = 0  then  f}' = K.   If  n < 0  then either  ZQV must hold 

or some combination of the variables  dY,   |Y||,  m,  dU,  etc, must be 

assigned new values.  We thus see that introducing relations between 

realizable nets can induce conditional conflicts within the nets and, 

conversely, if the m - variables of several realizable nets are fixed, 

then the introduction of relations between the nets is not arbitrary, but 

must proceed within the limitations set by the total conditional equation 

of the related nets. 
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DETECTION AND RESOLUTION OF CONDITIONAL CONFLICTS 

The partial conditional equations for Case 1, Figure 7, were 

derived on page 15. To increase the richness of the discussion which 

follows, we add the additional constraint Yr(m)W,  thus introducing three 

more cycles into the net of Figure 10.  The partial conditional equations 

for the augmented net are; 

a) dY + ||Y| 

b) dY + i + 

c) dX + ||x| 

d) dZ + ||z| 

e) dW + ||W| 

f) dY+ ||Y| 

g) dx+ ||x| 

h)  dY + i + 

+ n +  Z  + 8 -  T 

X  + j + n+ ||Z|| + s - ||T 

+ j + n + ||z|  + s = ||T| 

+ -- IMI 

+ -+ ||w|| - ||T|| 

+ J+m+ ||W|| - ||T|| 

|X|| + j+m+ ||.W|| = | |T|| 

Equations a) -» e)  were derived on page   15.  f) "• g) are a consequence 

of the added constraint Yr(m)W. 

In this subsection, we shall explore the interdependence of m - 

variables in a metrized net and examine the ways in which changes in the 

m - variables propagate through the partial conditional equations.  As 

stated previously, we shall confine ourselves to conditional conflicts 

of Types I and II. 

This restriction is equivalent to the assumption that the matrix 

of coefficients  (0's and l's)  of the linear system a) -• h) is inde- 

pendent of m - variable changes. 
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To each m - variable V,  except   |T||,  of the system 

a) -» h), we now add the quantity  V,  representing the change in  V 

Subtraction of the system a) -» h) from the new system yields a linear 

homogeneous system whose coefficient matrix is: 

dY  dX  ||x|] 

M = 

1 0 0 

1 0 1 

0 1 1 

0 0 0 

0 0 0 

1 0 0 

0 1 1 

1 0 1 

^ A /v y\ A /\ /^ .   /v Y\ I 1 j n m dZ dW |z 

1 0 0 1 0 0 0 1 

0 1 1 1 0 0 0 1 

0 0 L 1 0 0 0 1 

0 0 0 0 0 1 
X 0 1 

0 0 0 0 0 0 1 0 

1 0 0 0 1 0 0 0 

0 0 1 0 1 0 0 0 

0 1 1 0 1 0 0 0 

wli S 

0 
\ 

1   \ 
\ 

a 

0 
"   \ 

b 

0 i c 

0 1 d 

1 0 :e 

1 0        / f 

1 0     / g 

1 o / 1: 

M represents a system of 8 equations and 13 unknowns,  That M has 

rank 6  is easily verified.  From elementary algebra the nullity of M 

is 7 and therefore the system has 7 linearly independent solutions form- 

ing a basis for the totality of solutions of the system. 

The usual method for finding the basis for the null space of 

a matrix is to form the reduced echelon matrix by elementary row 

operations.  The reduced echelon matrix of M is: 
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** = 

A 
dY 

r 

A 
dX IWI ll?ll 

A 
i 

A 
j 

A 
n 

A 
m 

A 
dZ 

A 
dW llzll Ilwll 

A 
s 

1 0 0 1 0 0 0 1 0 0 0 1 0 

0 1 0 1 -1 0 0 1 0 0 0 1 0 

0 0 1 -1 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 -1 0 0 1 -1 1 

0 0 0 0 0 0 0 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 1 0 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 

The zero rows of K^ indicate that the original equations a) -» h) are 

linearly dependent.  From K^    we immediately conclude that 

(- I|Y| 
/N. 

- m 
A A A 

||w||, - ||Y|| +1-m- ||w||, ||Y|| i - J» 

A 
IWI,  i,  J, m- ||Z|| + ||W|| - s, 

A       A 
m. 

A 

1*1 
A 
S. 

A 
Iwl |z||, Iwl IsM) 

is the general solution of the system a) -» h).  Equivalently, we obtain 

all solutions by assigning arbitrary values to  ||Y||, 

||z||,  ||w||,  and   |s||,  and solving the system 

J,     m, 

a) 

b) 

c) 

d) 

e) 

f) 

A A /\ A 
dY+   | |Y| I  + m +   | |W| |   =  0 

y\ A A A A 
dX+   | |Y| I   -  i + m +   | |W| |   =  0 

A A A        A 
I|Z||   -   ||Y||+1+ J-0 

A 
n • lA 

A 
dZ + 

A 

|w| 
A 
Izl 

A 
+  s  =  0 

A 
+ s = 0 

A A 
dW+   | | W | |   =  0 
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A 

for the remainder of the variables.  In particular, the cases   |^|  • 1, 

AA/A^      
A A A A ^      A 

i = j -»- ||Z|| = ||WM = ||s|| =0;   i- 1, ||Y|| = J -»- .... 
/v 

=  |s||;  etc., provide a basis for the null space.  Any linear comoination 

of basis vectors is, of course, a solution. 

The basis vectors defined above allow us to develop tusoljciunf 

of conditional conflicts induced by m - variable changes within a metrized 

relation net.  For example, suppose in system a) - h) we allow the variable 

1) A 

m  to decrease to m - 1  ,  i.e.,  m = -1,   Since m  is a basis variable 

we set the remaining basis variables to  0,  then solve the equations 

__ A A A A ^ A 
a) - f), obtaining  dY = 1,  dX = 1,  n = -1,  and  ||x|| = dZ = dW = 0. 

Figure 12 shows the effects of these changes (the new variables are primed). 

J 

W 

m' 

Fig. 12 

The resolution above is by no means the most local, in the 

1) 1 is assumed to be a small increment of time 
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sense that the change in m induces changes in the least number of the 

remaining m - variables. A cursory inspection of the matrix M does, 

in fact, reveal that the local resolution to a decrease (or increase) in 

m is a corresponding decrease (increase) in dW and an increase (decrease) 

in W.  We shall presently develop an algorithm which will, in most 

cases, give local resolutions to conditional conflicts ariving from m - 

variable changes. 

From elementary algebra we know that a system of  n homogeneous 

linear equations with n unknowns has nontrivial solutions if and only 

if the determinant of the system is 0.   In particular, if the rank of 

the system is n,  then M has only the trivial solution, which signifies 

that either a Type III or Type IV conditional conflict has occurred (for 

example, some combination of the coefficients of the linear system a) -» h) 

has  been changed; equivalently, one or more of the partial conditional 

equations of the net do not hold).  If an m - variable V in a realizable 

A 
net is not allowed to change, then V = 0,  and the properties of the 

linear homogeneous system corresponding to the m - variable changes are 

altered. 

From the partial equations a) •* h) we construct a mapping 

F carrying each m - variable into the set of equations to which the 

variable belongs.  We call F the m - variable association, or simply 

the m.v.a.. of the net.  A few values of F are F(dZ) = {dj, 

F(||Y||) = {a, f},  and F(s) = {a, b, c, d}.   In (Ref. 2), it was shown 

that if B is a Boolean algebra of sets and a, b, eB,  then the function 

6(a,  b)  =  1 
aflb 
aUb 

where     |aflb|     and     |aUb|     are,   respectively,   the  numbers of elements  in 
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aOb and aUb, is a pseudo-metric on B, We now apply this function 

to define the distances between m - variables of a metrized relation 

net.  Thus if X and  Y are m - variables  of a net. then 

F(X)f1F(Y 
|F(X)UF(Y) 

6(X3 Y) = 1 

where  F is the net's m.v.a.  A few distances in the system a) -» h) are 

6(dZ,dW) = 1„|^nIe|Lal, 

^.i)-!-'^;^^!^- 1-2/5 -.6, 

6(s,   ||Z||)  =  1  -   lla,  be,   d)n{a    b rc^d]iB   L  _  1A . 0  . 
I la, b, ca dj| 

The last case shows why  6  is a pseudo-metric rather than a metric. 

The matrix M is the representation of the m.v.a, of the net 

from which the system a) -• h) was derived.  Using  6,  we now construct 

the local resolution to a change in m,   Computing the distances between 

m and the other m - variables we find that  ||Vtf||  is the closest 

variable to m.   We next define the quasi •• m - variable m/||w||  by 

F(m/||w||) = (F(m)UF(| |w| |)n[F(m)riF( | |w| |)] ,  the symmetric difference 

between F(m)  and  F(||w||).   The m - variable  closest to m/||w| 

is  d  and is fact  6(dW, m/||w||) = 0.   The computation ends here and 

it is evident that an increase (decrease) in m can be accompanied by an 

equivalent decrease (increase) in  [|W||,  which will in turn induce an 

equal increase (decrease) in dW.   Observe that this resolution, although 

local, is an equal increment resolution, and not necessarily the most 

desirable.  The existence of a non-trivial resolution still depends, of 
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course, on the rank and structure of M,  and the formation of E^    still 

yields the most general resolutions. 

We now extend the above process of conditional conflict resolu- 

tion to nets containing two or more activities, each of which must be 

completed at a specified time.  The method will be adequately demonstrated 

through Figures 13a) and 13b) which show, respectively, a metrized rela- 

tion net and its corresponding schedule.  Activities Z and R finish, 

respectively, at times T  and T 

S(i,j)  N(m)    U(n) 
X  *Y *Z 

K   E(U,V) 

a) 

1 A, 

b) 

1 2 

Fig. 13 

There are several ways of generating the partial conditional 

equations from the net of Figure 13a).  We may, for example, generate the 

equations first with respect to the cycles containing T ,  and then with 

respect to the cycles containing T ,  the remaining equations coming 

from XE(i, j)Y and  sE(U, V)R,  yielding, respectively,  t + ||x|j + j 

= ||Y||  and U + ||S|| + V = ||R||.   On the other hand we observe that 

MTJI   <  ||T2||   ->T2a(||T2||   -   HTJI)^,     the  derived  constraint 
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between  T  and  T    Figure 14 shows an alternative form of the net 

of Figure 13a). 

Fig. 14 

We may now generate the partial conditional equations with 

respect to the cycles containing both  T  and  T  (through  N(dX), 

N(dY),••••,N(dR)).   Finally we may generate first with respect to cycles 

containing only  T  (through N(dX),  N(dY),  N(dZ))  and then with 

respect to the cycles containing  T  and  T  (through  N(dW),  N(dS), 

N(dR)).   The first method requires the least computation, but the 

symmetry of the second method is also attractive.  The occurrence of a 

number of time-bound activities in a metrized relation net does not, at 

any rate, introduce any new problems in generating the partial conditional 

equations for the net. 

We conclude this section with a discussion of dynamic conditional 

conflict detection and resolution (again restricting ourselves to Type I 

and Type II conflicts).  The discussion will be based on the example used 

in the beginning of this section.  Denote the start time of any activity, 
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or relation parameter,  V , by A(*V).   In general the start times 

A(*V.)  of the activities and relation parameters V.  of a realizable 
J .1 

net are partially ordered.  In Case 1 of Figure 7 (with Yr(m)W added) 

we thus have A(*Y) = A(*i) < A(*X) < A(*j) < A(*n) = A(*m) < A(*Z) 

< A(*W) < A(*s) < A(*T) , if we assume  ||w|| < ||z|| + s. 

Suppose that the activities of the net are actually being 

performed.  The first activity to start is Y and suppose, for the sake 

of argument, that Y is started late.  From the m - variable  change 

matrix M we form E^    and obtain a new set of values for some subset 

of the variables.  It is now clear that the next change in the m - variables 

cannot involve  dY and hence  dY = 0.   The column in M , and hence E^  , 

corresponding to dY is thus set to 0.   Let M  and  E^  be the new 

matrices thus formed.  We infer that as the schedule is being completed 

we must form an ordered set of m - variable change matrices M. , each 

having one less non-zero column than its predecessor.  The ordering of 

the set of matrices exactly corresponds to the time ordering of the start 

and finish times of the net's activities.  If at any time we encounter a 

nXn matrix M  with rank n , then only the trivial solution obtains 

and either a Type III or Type IV conflict has been encountered.  If no 

such matrix is encountered then the schedule can be realized with no 

change of relations, providing that only positive values of the m - vari- 

ables are generated as solutions to conditional conflicts. 

CONCLUSIONS 

The detection and resolution of both logical and conditional conflicts 

in a complex plan, e.g. MOL, will most certainly require a partitioning 

of the plan into manageable sections, and thus induce partitions of the 
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schedules corresponding to that plan.  Some of the problems of defining 

relations between subschedules have been briefly explored in t-.is paper 

In a subsequent paper we shall treat this subject in depth, with the aim 

of discovering rules for partitioning schedules, and of developing a full 

analysis of the problem of defining relations between subschedules, 
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APPENDIX I 

METRIZED SCHEDULING RELATIONS15 

(A(*X)  and A(X*) are, respectively, the start and finish 

times of activity X). 

Def. 1     XT(i)Y <£=> A(X*) + i = A(*Y),  i > 0 

X   i    Y 

time 

Def. 2    XT(i)Y <F=> A(*X) = A(Y*) + i,  i > 0 

Y    *•   X 

^- time 

Def. 3    XP(i)Y <=> A(Y*) + i = A(X*),  i > 0 

Y      1 

X  

•j- time 

Def. 4    XP(i)Y <=> A(Y*) = A(X*) + i,  i > 0 

Y 

x ^-X 

_^. time 

1) As observed in the Introduction,  K, K, y, A.  ,  and  $ are metrized 
without additional parameters.  They are included here only in the 
interest of completeness. 
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Dc: f XN(i;i <J=> A("X) -r i - AC'VY),  i > U 

time 

IX i. o    XN(i)Y =^> A('-X) - A(*\) + i,  i > u 

t ime 

Dgf  7     X^(i)V <==> A('Y--'. --• A(X') + i,  0 < 

time 

bei.   8    Xu(i;i <=> A(i*; + I = V(X*),  0 <- i 1   -,  i ) A : I 

-^ time 

Def  9    X9(i)Y <*> A(*Y) + i - A(*X),  0 < I. 

-^•time 
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Def. 10    X0(i)Y <=> A(*X) + i = A(*Y),  0 < i < ||x|| 

time 

Def. 11    X£(i, j)Y <*=> A(*Y) + i - A(*X) and 

A(Y*) = A(X*) + j,  i>0, j>0, i+j>0 

time 

Def. 12    XZ(i, j)Y <=> A(*X) + i = A(*Y)  and 

A(Y*) + j = A(X*),  i > 0, j > 0, i + j > 0 

X 

time 

Def. 13    XKY <=> A(X*) = A(*Y) 

i__l 
-^ time 

Def. 14    XKY <=> A(Y*) - A(*X) 

Y  I X 

-^ time 
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Def.   15 XyY <=> A(*X)   = A(*Y) 

X 

-^  time 

Def.   16 XAY «0=> A(X*)  = A(Y*) 

->   time 

Def.   17 X$Y <^> A(*X)   = A(*Y)     and    A(X*)   = A(Y*) 

X 

-^ time 

Def.   18 XfJY <0=> X(y\/B(i) VB(i) VA V <*(i) V a(i) V $ V£(i, j) V £(i, J))Y 

Def.   19 XfiY <=> X(T(i)V K\ZKvf(i))Y 

Def.   20 XAY <=> X(y V 0(i) V 0(i) \/A V a(i) V a(i) V $ vE(i,j)\/ 

2(i,j)\/K\/K)Y 
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APPENDIX II 

METRIZED IMPLICATION TABLE 

The metrized implications of ternary strings of the relations 

defined in Appendix I are given below.  The general form is Xu)(i)Yuu( j)Z 

= Xuj.CijZyXU) (i„)ZV VXu) (i  )Z.       The relates are not  included  in 
II     il n n 

the table and X,  Y,  and Z are always to be interpreted, respectively, 

as the initial, intermediate, and final relates of the string.  To avoid 

long, cumbersome, expressions joins in implications are represented by 

commas, thus yielding lists of the elements of implications.  The table 

is divided into relation classes, the first factor in each product being 

the relation class to which the product belongs.  The products in each 

relation class correspond to a complete row of the bilateral implication 

table of (Ref. 1).  The employment of the forms of fi,  ft',  and A is 

explained in Section II, page A. 
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E(i.i)  E(i,j)E(n,m) = E(i+n, j-hn)  E( i . j)  E(i,j)E(n,m) = B(n-i), 

E(i,j)E(n,m) = N(i-n), = Y if n = i, 

= y if i = n,                       = S(i-n) 

= N(n-i). E(i,j)E(n,m) = E(i-m, i+m) 

E(i,j)r(n)  - T(j+n) Z(i,j)r(n)  - N(l+rH-||YJ |) 

E(i,j)r(n)  = ?(i+n) E(i,j)f(n)  = P( j+n+j |y| |.) 

E(i,j)K    = T(j) f(i,])K    = B(i+||x||) 

E(i,j)K     = ?<J) E(l,J)N(n)  = N(i+n), 

Z(iJ)N(n)  =N(i-n), = r(n-(j+||YJ |)) 

• y if i • n,          Z(i,j)N(n)  = N(n-i), 

= N(n-i). = Y if n = 1, 

E(i,j)N(n)  = N(n+i) = 8(i-n). 

E(i,j)P(n)   = P(n-j), E(i,j)P(n)   = P(j+n) 

-AifJ-n, E(i,j)P(n)   = T(n-| |z| |-j), 

= P(j-n). = K if n=||z| j+j, 

E(i,j)P(n)  = P(n+j) = a(n-j). 

E(i,j)cKn)  = P(n+j) E(i,j)a(n)  = a(j-n), 

E(i,j)oT(n)  = P(n-j), =Aif j = n, 

= A  if n = j,                       = a(n-j) 

= P(j-n). Z(i,j)a(n)  = c?(n+j) 

E(i,j)@(n)   = N(i+n) E(i,j)0(n)   = B(i-n), 

E(i,j)0(n)  = N(i-n), - Y if i - n, 

= Y if i = n,                       = B(n-i). 

= N(n-i). E(i,j)B(n)   = (3(n+i) 

E(i,j)Y     = N(i) E(i,j)Y     = N(i) 

E(i,j)A    = P(j) E(i,j)_A.    = a(j) 

E(i,j)K   = Kj+IM |; 

3D 



T£nl     r(n)E(i,j) = P(II+J+||Y||) 

r(n)Z(i,j)  = T(n+i) 

r(n)r(m)       = T(n+||Y||+m) 

r(n)r(m)       =  P(m-n), 

=J\_ if m * n, 

=  P(n-m) 

r(n)K =r(n+||Y||) 

T(n)K =  P(n) 

r(n)N(m)       = N(n+m) 

r(n)N(m)       =  P(m-||z||-n), 

'AH m- | |Z | |   = n, 

=  P(n-(m-||z||)). 

r(n)P(m)       =  P(m-(n+||Y||)), 

= Aif m = n+| |Y| I, 

=   P(n+IM|-m). 

r(n)P(m)       =   P(ii-hii+||Y||) 

r(n)a(m)       =  P(n-4m+||Y||) 

r(n)of(m)       =  P(n+(||Y||-m)) 

r(n)B(m)       =  P(n+(||z||-m)) 

r(n)B(m)       = r(n+m) 

r(n)Y = T(n) 

T(n)A =  P(n+||Y||) 

lilLL r(n)S(i,J) = P(I+||Y||+II) 

f(n)5i.J) = ?(J+n) 

r(n)r(m) - N(n-m), 

= y if n = m, 

= N(m-n). 

r<n)r(m) = r(n+||Y||+m) 

r(n)K = N(n) 

r(n)K = f(n+||Y||) 

r(n)N(m) = N(n+||Y||-m), 

- Y if ||Y||+n = m, 

= N(m~(n+||Y|1)), 

f(n)N(m) = N(n+m+||Y|1) 

f(n)P(m) = r(n+m) 

r(n)P(m) = P(in-(n+||x||)), 

- -A i f m = n+1|X| |, 

= P(n+||x||-m), 

r(n)a(m) = N(irt-||z||-m) 

r(n)o,(m) = r(n-hn) 

f(n)9(m) = N(m+||Y||+n) 

r(n)8(m) = N(||Y||-m+n) 

r(n)y - N(||Y||+n) 

r(n)A = f(n) 
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K     K2(i,j) = cK I|Y| |+j) 

K2(i,j) = T(i) 

KT(n)        =  r(n+||Y|I) 

KT(n)       =  P(n) 

KK =  T(||Y|I) 

KK =A 

KN(n)       = T(n) 

KN(n)       - N(n-||x||), 

- Y if n -   Mxll, 

=  N(||xj|-n). 

KP(n)       =  P(||Y||-n), 

= J\.if ||Y|| = n, 

= P(n-||Y||). 

KP(n) = P(||Y||+n) 

Ko-(n) = P(| |Y| |+n) 

Ka(n) = PC | | Y | | -n) 

KS(n) = <y(||z| |-n) 

KB(n)       = T(n) 

K      K2(i,j) 

KS(i,j) 

KT(n) 

KT(n) 

KK 

KK 

KN(n) 

KN(n) 

KP(n) 

KP(n) 

KY 

KTV. 

=   K 

= P(I|Y||) 

Ka(n) 

Ka(n) 

KB(n) 

KB(n) 

KA 

= B(i+||Y| |) 

= r<j) 

=  N(n) 

-f(||Y||+n) 

= Y 

= r (11 Y | h 

=  N(| |Y| |-n) , 

- Y if n -   ||Y 

=   N(n-||Y|I). 

=  N(n+||Y|I) 

= f(n) 

=  P(||x||-n), 

= 7Vif   | jxj |   = 

= P(n~||x||). 

=  8(||z||-n) 

= f(n) 

= N(n+||Y||) 

=   3(||Y||-n) 

= N(| |Y| I) 

- K 
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N(n)  N(n)Z(i,j) = S(i-n), 

= y if i = n, 

= N(n-i). 

N(n)E(i,j) = N(n+i) 

N(n)r(m)  = N(n+||Y||+m) 

N(n)f(m)  = N(||z||-hn-n), 

= y if n = ||z||-hn, 

= N(n-(||z||4m)). 

= N(n+m) 

N(n)9(m) = N(m+n) 

N(n)y   = N(n) 

N(n)A  - a(||x||-(||Y||+n)), 

-Aif ||X|| - ||Y||+n, 

=P(||Y||+n-||x||). 

N(n)N(m) 

N(n)N(m) 

N(n)P(m) 

N(n)P(m) 

N(n)a(m) 

N(n)5(m) 

N(n)S(m) 

N(m-n), 

Y if  n = m, 

N(n-m). 

N(||Z 

y if 

N(n+| 

«(||X 

Jtif 

P(n+| 

P(n+| 

a(m-( 

TV if 

P(||Y 

l-hn-Ctri-l |Y| I)), 

|Z| |+m = n-t-1 |Y| | , 

Y| |-C| |Z| |-Kn>>. 

|-(rrf||Y||-hn)), 

|X|| = n+l|Y||+m, 

Y||-hn-||x||). 

|-(n+||Y||-hn)), 

= J\_if  n+| |Y| |+m =   ||x||, 

Y| l-Hm-l |X| I. 

|Y||+n-||x||)), 

|Y||+n-||x||   -«p 

|+n-||x||-m). 

B(m-n), 

y if m = n. 

N(n-m). 
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M(n) N(n)E(i,j) 

N(n)2(i,j) 

N(n)r(m) 

N(n)r(m) 

N(n)K 

N(n)K 

N(n)N(m) 

N(n)N(m) 

N(n)P(m) 

N(n)P(m) 

N(n)o,(m) 

N(n)Q'(m) 

N(L+n) 

N(n-i) 

f  if  i  =  n, 

N(i-n) 

N(||Y|l-n+m), 

N(n)B(m)   =  N(n+m) 

N(n)B(m)   =  N(n-m), 

=  y  if n = rn 

=  N(m-n). 

N(n)y        =  N(n) 

= Y if   | |Y| |+m » n,       N(n)7\-      =  P(n+| jx| |-j | Yj |), 

N(n-( | |Y| |+m)). 

Hm+n) 

N(n-||Y||), 

Y if n -   ||Y||, 

N(||Y| i-n)„ 

f(n) 

N(n-m), 

f if  n = m, 

N(m-n). 

N(n+m) 

N(| |Z| l-Hn+n-l |Y| |), 

Y if   | |Z| I-Knrhn =   ||Y||, 

N(||Y||-(n-+nri-||z||)). 

N(n-(||Y||-hn-||z||)), 

Y if n = ||Y||+m-||z||, 

N(||Y||-hn-||z||-n. 

N(n-(| |Y| |-hn-| |z| |)), 

Y if  n =   ||Y||-hn-||z||, 

N(||Y||+tn-||z||-n)„ 

N( | |z| |+m+n-| |Y| |), 

Y if ||z||-hn+n = ||Y||, 

NC | |Y| 1-Cn-hxH-l |Z| |)). 

= A if n+||x|| = 

= P(||Y||-(n+||X )) 
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P(n)   P(n)£(i,J) = P(n-j), 

-A if n - j, 

- a(J-n). 

P(n)fil.J) = P(n+j) P(n)T(m) 

P(n)r(m)  = <y(||z||-hn-n) if n>m, 

= K if m = n, 

= T(| |z| |+m-n) if noil,  P(n)y 

= P(m+||Y||+n) 

P(n)0(m) = N(m+||Y||+n-||x||), 

- f if m+| |Y| |+n- ||x| 

P(n)r(m) 

P(n)K =N(n-||x||), 

= y if n = ||x||,      P(n)V\_  = 

- B(||x||-n). 

P(n)K     = P(||Y||+n) 

P(n)N(m)  = N(||Y||+n-(m+||x||)), 

- V if ||Y||+n = m+||x||, 

= N(nrf||x||-(||Y||-hO). 

P(n)N(m)   - N(m+||Y||+n-||x||), 

- Y if m+l|Y||+n = ||X||, 

= 8<;||x||-(m+||Y||+ri)). 

P(n)P(m)   = P(n+m) 

P(n)P(m)   = P(n-m), 

= _A if n = m, 

= P(m-n). 

P(n)a(m)  = P(n-m), 

=-A if n = m, 

= cKm-n). 

P( 11)0(111)  = P(n+m) 

T(||X 

N(||Y 

y if 

8(||x 

N(||Y 

Y if 

B(||X 

P(n) 

|-(m+||Y||+n)). 

|+n-(||x||+m)), 

|Y||+n-IIXII4•, 

|-hn-(||Y||+n)). 

l+n-||x||), 

|Y||+n.||x||, 

|-(||Y||+n)). 
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P(n) P(n)Z(i,j) 

P(n)E(i,j) 

P(n)r(m) 

P(n)f(m) 

P(n)K 

P(n)K 

P(n)N(m.) 

P(n)N(m) 

P(n)P(m) 

P(n)P(m) 

P(n)Q'(m) 

P(n)a(m) 

=  P(n+j) 

=  P(j-n), 

= TVif   j  =  n, 

= P(n-j). 

= r(n+m) 

=  N( | | Z 

=  Y  if 

=  N(||X 

= T(n) 

= N(| | Z 

= y if 

=  N(| |x 

-  NC | |Y 

= y if 

=   N(||X 

=N(||Y 

• y if 

=   N(||X 

=   P(m-n), 

= JV. if m =  n, 

=  P(n-m). 

=   P(n+m) 

=  P(n+m) 

=  P(m-n), 

= J\_if m =  n, 

=  P(n-m). 

P(n)S(m)   =   N(m+||Y||-(||X||+n)), 

=  y   if  m+1 IYI I =  |jX||+n, 

+Tn+||Y||-(| |X| |+n)), 

z||+m+||Y|| =  ||x||+n, 

+n-(||z||+m+||Y|I)). 

+||Y||-(||X||+n)), 

Z||+j |Y|| =  I|x||+n, 

+n-(||z||+||Y|I)). 

-(||xj |+n+m)), 

Y| | = | |x| |+n+m, 

+n+m)-||Y|I), 

-hn-(| JXJ |+n)), 

Sf| |+m= | |x| |+n, 

+n-(||Y||+m)). 

=   N C | | X 

T(n)T(m)   =  N(| JY 

- y if 

=   N(j |X 

P(n)y =  N(j |Y 

= y if 

=   N( I I X 

P(n)-A.      =   P(n) 

+n-( | 

-(| |x 

i-n+m- 

dlx 
Y!! = 

Y||+m)). 

|+n+m)), 

| X| |+n+m, 

M I), 

l+n)), 

Ixll+n. 

+n-     Y     ), 
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g(n)  a(n)£(i,j) = or(n+j) 

a(n)E(i,j) = P(J-n) 

•Aif j - n, 

= P(n-j). 

a(n)r(m)  = r(n+m) 

or(n)r(m)  = P( | |Y| |-n-hn) 

a(n)K    = T(n) 

a(n)K    = P(||Y||-n) 

c*(n)N(m)   = N(||Y||"C||X| |+n-Hn) ) , 

- f if   ||Y|| = ||x||-h*hn, 

= N(| |x| |+irim-| |Y| I). 

or(n)N(m)       = N( | |Y| |-hn-( | |x| |+n)) , 

- Y if   | |Y| |-Hn =||x||+n, 

= B(||x||+n-(||Y||+m)). 

cy(n)P(m)       = P(m-n), 

= A if m =  n, 

= P(rf-m). 

a(n)Hm)      = P(n+m) 

cv(n)a(m)       = P(n-hn) 

Q'(n)<y(m)       = P(m-n) , 

= .A. if  n = m, 

= P(n-m). 

a(n)B(m)       = N(m+||Y||-(n+||x||)), 

- * if m-t-1 | Y | | = n-t-1 | X | | , 

= B(n+||x||-(m+||Y||)). 

Qf(n)T(m)       = N(||Y||-(||x||+n)-m), 

- y if   ||Y||-(||x||+n)-m, 

= N(m-(||Y||-(||x||+n))). 

a(n)Y = N(||Y||-(||x||+n)), 

-rif IWMIxlK 
-rdlxM+n-llYll). 

a(nXA- P(n) 
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Qftnl      <y(n)E(i,j)  = a(j-n), a(n)f - £f( | |Y| |+n-| |x| |), 

= Aif  J - n, - Y if   | |Y| I-Hn- | |x| | 

= ^n"J)- =  B(||x||-(||Y||+n)). 

c*(n)E(i,j) =  P(n+j) a(n)A= a(n) 

Q<n)r(m)       =  N(||x||-n+m) 

^      Sf MM Qf(n)r(m)       =   P(m+| |Y| |+n) 

ST(n)K =8(|jx||-n) 

oT(n)K =   P( | |Y| |+n) 

af(n)N(m)        =   N(||Y||+n-||x||-m), 

=  Y  if   ||Y||+n-||x|| =m, 

= N(m-(||Y||+n-||x||)). 

a(n)N(m)       = N(m+||Y||+n-||x||), 

- Y If m+||Y|i+n=||x||, 

=  B(||x||-(m+||Y||+n)). 

a(n)P(m)  = P(n+m) 

a(n)P(m)  = a(n-m), 

= y\- if n = m, 

= P(m--n). 

a(n)cy(m)  = cKn-m), 

= -A if n = m, 

= Qf(m-n). 

Q'(n)Q'(m)  = P(n+m) 

a(n)B(m)   = N(m+||Y|l+n-l|x||), 

= y if m+||Y||+n= | |x| |, 

= B(||x||-(m+||Y||+n)). 

a(n)B(in)  = N( | | Y | |+n-(m+| |x| |)) , 

- ¥ if   ||Y||+n = m+||x||, 

= BCnri-1 |x| |-(I |Y| |+n)). 

44 



fiini  B(n)E(i,j) = N(i+n) 0(n)y = N(n) 

B(n)2(i,j) = N(n-i), 8(n)_A= J(n+||x||.||Y||), 

- t If n- i, .Alt  n+||x||« ||Y| 

-"<*-»>. -P(l|Y||-(itf||x||)) 

g(n)r(m)  = N(| |Y| |-tt+m) 

B(n)r(m)  - r(n+m) 

B(n)K     -N(||y||-n) 

B(n)K    = r(n) 

B(n)N(m)  = N(n-m), 

• y if n • m, 

- N(m-n). 

B(n)N(m)  = N(n+m) 

B(n)P(m)  = N(n-(||Y||-(||z||+m))), 

= Y if n= ||Y||-(||z||-hn), 

= N((||Y||-(||z||-hn))-n). 

B(n)P(m)  = B(n-((||Y||-hn)-||z||)), 

= Y if n= | |z| l-Kn-n, 

= NCCC I |Y| l-Hm)- | |Z| 

B(n)cKm)  - a(irt-||x||-(l|Y||-hn)), 

= _Aif n+| |x| | = | |Y| |-hn, 

= P(||Y||-hn-(||x||+n)). 

B(n)a(m)  = N( | | Z | |+nH-n-| |Y| |), 

- Y if ||z||+m+n = ||Y||, 

= N(||Y||-(||z||-h«+n)). 

B(n)B(m)  = N(n+m) 

B(n)B(m)  = N(n-m), 

= Y if n " m. 

= N(m-n). 
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B(n)  B(n)E(i,j) 

B(n)E(i,j) 

B(n)r(m) 

T(n)r(m) 

F(n)K 

jT(n)K 

T(n)N(m) 

B(n)N(m) 

B(n)P(m) 

B(n)P(m) 

0(n)a(m) 

B(n)Q-(m) 

B(n)B(m) 

B(n)B(m) 

= B(i-n), 

• Y if i - n, 

= B(n-i). 

= N(n+i) 

= N(n+| JY||+m) 

= P(j |x||-n+m; 

= N(n+||Y||) 

= a(||x||-n) 

= N(n+m) 

= N(m- n), 

= Y if m = n, 

= B(n-m). 

= P(m.-(|M|+n-||x||), 

- A if m - | |Y||+n-||x| |, 

= P(||Y| j+n»||x||-m). 

= a(||x||-(n+j |Y||+m)), 

= Aif | |xj |= n+| |Y| j+m, 

= P(ttf||Y||-hB-||Y||). 

= a(||x||..(nH-||Y||-hn)), 

= A if I |x| | =n+| |Y| |+m, 

-P(n+||Y||^||X||). 

= a(m»(||Y| i+n-||x||)), 

= VLif m= ||Y||+n-||x||, 

= P(||Y||+n-||x||-m). 

= BCm-n) 

• Y if m • n, 

= |(n-iB). 

= N(n+m) 
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B(n)Y = B(n) 

if(n)A- cK| |X| |-(n+j |Y| j)), 

= 71 if | |x| I = n+| |Y| I 

= T(n+||Y||-||x||), 



_y_      yS(ij) = N(i) 

= y if i 

ylf(i,j) = N(i), 

= y if i 

yr(n) 

/(n) 

yK 

yiT 

yN(n) 

yN(n) 

yp(n) 

yp(n) 

ycKn) 

yci^n) 

yB(n) 

yl(n) 

yy 

yA 

= o. 

= o. 

N( | |Y| l-Hcn) 

r(m) 

N(||Y||) 

K 

N(n) 

N(n) 

+n-||Y||), 

Z||+n-   ||T||, 

-(I 
-(I 
x|| 

+n- 

"(I 

x|| 

+n- 

= N(||Z 

' y if 

•• N(||Y 

=a(||x 

= Aif 

• PC IIY 

• Scl |x 

•Aif 

. P(||Y 

' 8(||Z 

• y if 

- N(||Y 

' B(n) 

- N(n) 

• y 

• B(||Z||-||Y||), 

•Ti£ l|z|| - ||T||, 

= N(||Y||-||Z||). 

|z||+n)). 

|Y||+n)), 

= l|Y||+n, 

llxll). 

|Y||+n)), 

- l|Y||+n, 

llxll). 

IIY||), 

Z||+n- ||Y||. 

-(||z||+n)). 

+n 
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A AS(i,j) 

Am,]) 

Ar(n) 

A f(n) 

AK 

A K 

AN(n) 

AN(n) 

A P(n) 

A P(n) 

Aa(n) 

AcKn.) 

AB(n) 

AB(n) 

AY 

= A if j = 0, 

= a(j). 

= Aif  j = o, 

= a(j). 

= r(n) 

=  P(n+||Y||) 

=   K 

= P(||Y 

-  P(||* 

= Aif 

=  P(||Z 

= B(||X 

=  Y  if 

= N(||Y 

=   P(n) 

=  P(n) 

= a(n) 

=  P(n) 

= ec I |x 

=  f if 

= N(n+| 

= ¥( 
= Y if 

~(n+||z||), 

Y||   = n+Hzll, 

+n-||Y||). 

-(||Y||+n)), 

X||   =   l|Y||+n, 

+n-||x||). 

AA 

= N( 

= N ( 

=  Y if 

= T( 

= A 

l-CllYll+n)), 

|X||  =   ||Y||+n, 

Y||-||X||). 

|+n-||Y||), 

|x||+n -||Y||, 

|-(||x||+n)). 

I-IWI). 
Ml - llxll 
l-IMI). 
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APPENDIX III 

METRIZED TRUTH TABLE 

The following table corresponds to the truth table of (Ref. 1), 

with the exception that the entries for true ternary cycles are replaced 

by equations which must hold among the m - variables of the cycles.  The 

general form of the cycle is taken as Xu)(i)Ycu(j)X„  As in the case of 

the metrized implication table relates are omitted.  The relations  Q, 

fj1 ,  and A have not been included since the equations corresponding to 

true cycles containing those relations are already represented in the 

table (see pages 3  and A ).  The table is symmetric and thus only 

half of it is shown.  If one encounters a blank for Xu)(i)Yuu(j)X,  simply 

form Xco(j)Yco(i)X to find the corresponding equation. 
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